Hypercube
Multiprocessors 1987

EDITED BY
Michael T. Heath
Oak Ridge National Laboratory

siam

Philadelphia 1987

A High Performance Operating System for the NCUBE*

T.N. MUDGEt, 4. D. BUZZARDt AND T. §. ABDEL-RAHMAN{}

Abstract. This paper examines the existing hypercube array processing node operat-
ing system for the NCUBE. Extensions to the operating system that lead to petformance

increases for important classes of algorithms are described. Performance results are given
and are compared to those of other systems.

1 Introduction and Motivation

NCUBE produces a family of commercial hypercube multiprocessors that range in size
from 64 processors (NCUBE/six) to 1024 processors (NCUBE/ten). The hypercube array
of processing nodes is managed by a host computer (an Intel 80286 based system). Soft-
ware development for the hypercube is carried out on the host using a multiuser Unix-like
operating system called Axis. It allows the hypercube array to be partitioned into subcubes
that may be allocated to different users. ‘These subcubes are logically independent of each
other and the processing nodes in each subcube are numbered logically beginning at zero.
In addition, there is also a run-time executive program called Vertex that executes on the

processors of the hypercube array. This paper discusses the design of high performance
extensions to Vertex.

The array processors are VAX-class 32-bit microprocessors with IEEE standard floating
point capability. Each node has 128 K-bytes of local memory and 22 high speed (1 M-
byte per second) unidirectional DMA channels. The channels are paired to provide 11
bidirectional links. Ten of these links can be connected to neighboring processors in the
hypercube, thus allowing for systems of 1024 processors. The eleventh link connects to the

* Ncuse Corporation, Tempe, Arfzona

t Advanced Computer Architecture Laboratory, Department of Electrical Engineering and Computer
Sclence, The University of Michigan,

HIGH PERFORMANCE OPERATING SYSTEM FOR THE NCUBE 91

I/O subsystem which is also connected to the host. More architectural details can be found
in [1].

Algorithms that have been proposed for or implemented on hypercube multiproces-
sors can be classified by their primary mode of communication. In particular, there are
three common modes of communication: nearest neighbor, broadcast, and random access.
Nearest neighbor (NN) communications are between adjacent processors in the hypercube
array. Broadcast (BC) communications originate from a single source and are sent to the
remaining processors, Finally, random access (RA) communications, as the name implies,
tnay originate or terminate at any of the processors. Clearly RA communications are the
most general. NN comnmnications are subsumed by RA, and BC communications can be
achieved by multiple RA communications.

The present version of Vertex implements only RA communications. While this is
clearly sullicient, performance of many algorithms can be greatly enhanced by employing a
broad set of more specialized communication primitives. In this paper we discuss our initial
investigative efforts in this area.

The remainder of this paper is organized as follows. Section 2 contains a concise descrip-
tion of the Vertex run-time executive program. The points of inefficiency inherent in the
standard Vertex conumunication scheme are pointed out in Section 3. Our high performance
extensions to Vertex are described in Section 4. Section 5 describes the experiments that

we have performed and discusses their results. Finally, concluding comments are given in
Section 8.

2 Explanation of Vertex

Vertex is a run-time executive program that executes on the NCUBE array processors.
The services provided by Vertex are user program loading, low-level error handling, low-
level debugger support, node identification and time call handlers, and communications
support that includes message buffer handling. Vertex is compact, requiring only about
5 K-bytes of inemory for both code and data (excluding the communication buffers}. Entry
to Vertex from high level language libraries and user written assembly language routines is
via an operating system trap call that saves the current program status word and program
counter and branches into Vertex code via an interrupt jump table. A similar mechanism

may also be invoked by the hardware in response to an execution exception, or an external
interrupt request.

User programs may query Vertex to learn the logical (with respect to the currently
allocated sub-cube) node address on which they are executing, the host interface processor
address, and currently allocated sub-cube dimension. They may also request the current
processor time, which is kept in multiples of 1024 clock cycles since node initialization.
‘These two call handlers, and those of the communication system that will be discussed
later, comprise the primary operating system trap call services.

The low-level error handlers, which are invoked by hardware recognized program ex-
ceptions, save processor state information and suspend execution of the user process. This
allows the low-level debugger, invoked by communication system interrupt handler upon
receiving a debugger message, to examine the state of the node as it was when the excep-

92 MUDGE ET AL,

tion was detected. The debugger then allows the examination and setting of registers and
memory, and the setting of breakpoints on any allocated node.

The memory map of an array node divides the 128 K-bytes into four areas: the interrupt
jump table; user code and data space; Vertex code and data space; and the communication
buffer pool. The interrupt jump table occupies a fixed 2 K-byte region of memory beginning
at address zero, The Vertex code and data space occupies about 5 K-bytes of memory. It is
statically relocatable and lies between the user code and data space and the communication
buffers. Typically about 27 K-bytes of memory is reserved for communications buffers,
leaving the remaining 95 K-bytes for the user code and data.

Vertex conununications are driven by two events: requests from the user program,
via operating systein traps; and responses to communication channel interrupts. A brief
description of the three calls that comnprise the interface to the user program is given here,
a more detailed discussion appears later. The node write call is named nwrite. It sends
a message of a specificd type to a designated destination. The nread call examines the
unclaimed received message queue for a message from the specified source of the desired
type. When the desired message is found, it is returned to the caller. The ntest call performs
a function similar to nread, except that it returns immediately after checking the existing
messages and only reports on the success of the search — located messages are not returned.

A pool of communication buffers is maintained by Vertex. These buffers are used on
both the sending and receiving nodes. They allow callers of nwrite to be released after a
communication buffer is allocated and the user data is copied into it. Therefore, callers are
not held np while the system is waiting for access to a communication channel. Furthermore,
if the data to be sent is allocated from dynamic stack-based storage, the caller may release
that storage immediately after reburning from the nwrite call. Similarly, callers of nread
are not required to make their calls before tnessages arrive since all arriving messages are
first stored in a communication buffer,

The conununication buffer pool beging as a single free buffer. Requests for buffers-are
satisfied by searching linearly through the doubly linked buffer pool for free buffers of a
sufficiently large size. When one is located it is further checked to see if it exceeds the
requested size by 32 or more bytes; if so, the free buffer is split so that a buffer of the
requested size can be allocated from the end furthest from the front of the list. This policy
tends to concentrate free buffers near the beginning of the list. If no buffers of sufficient size
are located the request may be queued to search again when another buffer is returned. In
addition to attempting to satisly queued buffer requests, the buffer deallocation routine also
collapses adjacent free buffers into a single buffer. Buffers that are in use may be queued on
other systein queues via a second pair of link felds. Thus, for its own internal use Vertex
provides buffer allocate, deallocate, enqueue, and dequeue procedures.

The specific operation of nwrite is to check for valid message length and destination,
allocate a communication buffer and copy the user data to it, calculate the outbound channel
to use, and, if the channel is inactive, initiate the message transfer protocol. In the case
that the channel is busy, the message is queued to be sent as soon as the channel becomes
available. In either case, the caller is released to continue execution. When the final
step of the DMA controlled message transfer has been completed an interrupt is signalled.
The service of this interrupt includes the releasing of the communication buffer. Incoming
messages are placed in communication buffers and then queued in an unclaimed message

HIGH PERFORMANCE OPERATING SYSTEM FOR THE NCUBE 93

list. Nread checks this queue for a message with a specific source and type, if it is not found
it will wait until an appropriate message arrives. When the requested message is located
it will be copied to the user data space, dequeued from the unclaimed message list, and
the communication buffer will be released. Callers to nread and ntest may specify that
messages of any incoming source or type are desired.

Message transmission is controlled via a three way handshake protocol. Simply stated,
the sender sends a two byte message to the receiver indicating the number of bytes it wishes
to transinit (all inactive channels are set to receive two byte transmissions). The receiver
allocates a communication buffer, sets the appropriate DMA channel to receive the indicated
number of bytes, and then transmits a two byte acknowledgement back to the sender. Upon
receiving this acknowledgement the sender transmits the entire message. This protocol is
initiated by a call to nwrite. However, the remaining steps are handled by a sequence of
interrupt events. Specifically, the reception of the two byte length message by the receiver
and the reception of the two byte acknowledgement by the sender both signal interrupts.

An interrupt is also generated on both the sending and receiving nodes when the DMA
transfer of the message is completed.

A more detailed description of a message send/receive transaction between two adjacent
nodes is given below. Figure 1 expresses this transaction pictorially. In step 1 the sender
issues an nwrite call, which generates an operating system trap event. In step 2 the Vertex
nwrite trap handler allocates a communication buffer, waiting on a buffer request queue
if none are presently available. Once allocated (step 3), the message data is copied from
the user process to the communication buffer and the buffer is queued on the send list.
The nwrite caller is released at this point. In step 4 the two byte transmission request,
indicating message length, is sent. If the channel to the requested destination is not busy
this action occurs as the final action of step 3. Otherwise, this transmission request is queued
pending an end of message transfer interrupt from the DMA for the message currently using
the channel. Reception of the two byte transmission request generates an interrupt on the
receiving node. The handler for this interrupt (step 5) attempts to allocate a communication
buffer of the requested length. If it is successful, an acknowledgement message is sent
back to the sender (step 6). If a buffer is unavailable a buffer request is queued and
the acknowledgement message is postponed until after this request is satisfied. It may
also be necessary to wait for the channel from the receiver to the sender to become free
during step 6 (if a previous message send is still in progress). The reception of the two byte
acknowledgement generates an interrupt for the sender. In this interrupt handler (step 7) the
DMA transfer of the message is begun. Upon completion of this DMA transfer an interrupt
is generated for both the sender and the receiver. On the sender the communication buffer
is dequeued from the send queue and released. If another message is ready to be sent on
the same channel this procedure is repeated from step 4, otherwise the channel is reset to
the inactive state. On the receiver the message is checked to see if this node is the final
destination and if this message is a user message. If so, the communication buffer is queued
on the incoming unclaimed message list and the channel is reset to its inactive state. If
an nread call has been issued for the incoming message, it is dequeued from the incoming

unclaimed message list, copied to the user data space, and the communication buffer is
released, this corresponds to step 8.

Multi-hop messages are handled in a manner very similar to the above. The following
actions, beginning with step 8, occur on each of the intermediate nodes. The receiver

94 MUDGE ET AL.

Sending Receiving
Processor Processor
USER USER
SPACE SPACE
e It
1 4 N
VERTEX ¢ VERTEX
2 6
COMMUNICATION COMMUNICATION
BUFFERS BUFFERS
Actions:
1. Sender: nwrite call
2. Sender: sllocate communication buffer
3. Sender: copy buffer, release nwrite caller
4. Sender: transmission request
5. Receiver: allocate communication buffer
6. Receiver: transmission request accepted
7. Sender: transmit data
8. Receiver: If received pending, copy buffer
release nread callet
Interrupts:

after 4 on receiver
after 6 on sender
after 7 on sender and receiver

Potential Waits:

at 2 for local buffer
at 4 for use of channel

D

at 5 for remote buffer and use of channel

Figure 1: Node to Node Communication.

HIGH PERFORMANCE OPERATING SYSTEM FOR THE NCUBE 95

interrupt handler inspects the destination field of the message; calculates the next channel
to send it out on in order to get it another step closer to its final destination; queues the
cotnunication buffer on the send list; and, if the channel is not busy, sends the two byte
transmission request message thus assuming the role of the sender at step 4. This procedure

is repeated on each of the intermediate nodes.

System niessages (primarily for interactions with the low-level debugger) are also han-
dled in a very similar manner. On the destination receiving node at step 8 the message is

checked to sce if it is a system message, if it is the appropriate system message handler is
mvoked,

3 Points of Inefficiency

Two major points of inefliciency can be identified within the communication scheme im-
plemented in Vertex with respect to NN comtnunications. One, is the use of buffer copies,
the second is the overhead incurred by the three-way handshake protocol. In many cases,
algorithing that fall into the NN classification have a priori knowledge of all of their com-
munication requirements; presently this knowledge is unused. With silnple extensions to
Vertex this knowledge can be exploited to yield much more efficient communications.

While the cost incurred by copying data is obvious, the cost of requiring a more complex
commuuication protocol than is necessary is much harder to quantify. This cost can be
traced to two major sources. One, is the overhead incurred by servicing interrupts generated
by unuecessary protocol messages. The second, is the loss of the use of the channel from the
receiving node to the sending node for the duration of time between the initial transmission
length message arriving at the receiver (step 4 in Figure 1) and the acknowledgement
arriving back at the sender (step 6 in Figure 1). Notice that this duration may be arbitrarily
long if the receiving node does not have sufficient cormmunication buffer space immediately

available. "These effects are reftected in the experimental results that are be presented in
Section 5.

Randoimn communications do not incur the buffer copy overhead at intermediate nodes.
However, they do have the same protocol overhead on every node that the message traverses.
They also incur the additional cost of storing the entire message at each intermediate node
before beginning to forward it to the next node.

BC communications are not directly supported in vertex. Broadcasts are typically
implemented by a sequence of NN communications arranged in a spanning tree order 12].
Each node (except the root) receives a message from its parent node, then serially relays the
message to each of its child nodes. The root node begins the operation by serially sending
the nessage to each of its child nodes. Thus, in addition to the inefficiencies already noted
for near neighbor communications, broadcasts also incur a store and forward (with two
buffer copies) overhead and a serialization cost associated with sending to only one child
node at a time on each of the intermediate (ie., non-terminal) nodes in the spanning tree.
Serialization is unnecessary as a broadcast instruction is implemented in the instruction set
of the node processors. The broadcast instruction allows a message to be sent on any subset
of the ontput channels of a node in a single DMA action.

96 MUDGE ET AL.

4 Extensions to Vertex

The Vertex operating systein has been extended to address both of the major inefficiencies
present in NN commumications. The new send call, named send, and new receive call,
named revreq, do not use communication buffers and are asynchronous. Since return from
the send or revreq call does not indicate their completion, the caller passes a pointer to
a flag variable which is set for this purpose. The indication of completion is signalled by
an end-of-DMA interrupt for both send and revreq. 'This protocol places a burden on the
caller of send to ensure that the message data is not corrupted before the completion flag is
set. It also requires that the receiver make a call to rcvreq before the anticipated message
arrives. The latter constraint could be relaxed by allocating a communication buffer if the
call to revreq has not yet occurred. However, to do so would lead to incompatibilities with
the next extension to be discussed. The primary benefit of bufferless communication is that
_ the incremental (i.e., per byte) cost is substantially reduced.

The send and rcvreq call also exploit the a priori knowledge that is inherent in most
NN class programs by eliminating the three-way handshake protocol. This extension places
the additional requirement on the caller of reveeq to specify the exact number of bytes
expected to be received. The chief benefit of this change is a substantial reduction in the
fixed overhead of NN communications.

There are three other calls that are presently in available in extended Vertex. Two
routines have been added to allow the communication scheme to be switched dynamically.
In fact, the communication scheme in use can be selected on a channel by channel basts.
These calls are necessary because the extended Vertex communication scheme relies upon
different interrupt handlers than standard Vertex. The final extension is a broadcast call
that allows a node to send the same message to any set of nearest neighbors simultaneously.

b Experiments and Results

For programs with simple NN communications we expect the time added by the commu-
nications to be approximated by the formula t.,m, = mz + [, where t ., is the total
message communication time, m is the length of the message in bytes, x is the incremental
(per byte) message cost, and [is the fixed overhead (protocol) cost. Of course, this formula
will only hold for simple communications. It does not take into account the positive effect
of overlapping message transmission with computation, nor the negative effect of waiting on
resources (e.g., communication buffers or channels). Nonetheless, the parameters of this for-

mula are frequently quoted as they do provide a partial indication of expected performance
and they are easily measured.

A common technique for measuring the aforementioned parameters is to configure the
array nodes into a logical ring, then record the amount of time required to pass a fixed size
message around the ring a specified number of times. When this experiment is repeated
for messages of differing sizes the parameters m and f can be easily extracted. The results
of such an experiment using both standard and extended Vertex communication primitives
are given in Table 1. It can be seen that the use of extended Vertex primitives yielded an
improvement of 5.6 in fixed overhead and 2.43 in incremental cost over standard Vertex.

HIGH PERFORMANCE OPERATING SYSTEM FOR THE NCUBE 97

Standard Vertex Extended Vertex Speedup
| Fixed Overhead | 466.40 (usec/message) | 83.20 (usec/message) 5.60
Incremental Cost 3.14 (psec/byte) 1.29 (psec/byte) 2.43

Table 1: Ring Message Results.

Number NCUBE iPSC MarkII(8Mhz)
of bytes | Std. Vtx. Ext. Vtx. | CrOS HIOS CrOS

8 245.76 16.76 160 5960 86.0

64 41.79 10.37 80 777 455

256 19.88 6.45 79 202 41.4

able 2: Values of t,,,,, (1sec) for the NCUBE, iPSC and MarkllI.

Another frequently quoted communication performance parameter is given in [3]. 1t
is also called teomm, but we will henceforth refer to it as t! . to avoid confusion with
our earlier definition. The value of ¢t is conventionally defined as the transfer time
of a 32 bit word, and is often given for a range of total message sizes. It can easily be
related to teomm by tho,... = &ﬂ";"‘ml, where m is the length of the message in bytes. To
facilitate comparison with other systems, values of tiomm are given in Table 2. The values
for the Intel iPSC and Caltech MarkIl were taken from [3]. The iPSC times are reported for
both the Intel Hypercube Operating System (IHOS) and the Caltech Crystalline Operating
System (CrOS). The values stated for the NCUBE were measured directly, though they
could have been derived from the information given in Table 1. As we would expect, the
improvement of extended Vertex over standard Vertex ranges from the speedup for fixed
overhead towards the speedup for incremental costs as the total message size increases.

The effects of computational overlap and resource contention, mentioned earlier, are
often factored into the formula for overall execution time. This formula is given by,

Tezee = Teate + (l - '7)Tcomm

where v € (—o00,1] is the degree of communication transparency, T.,. is the total com-
putation time of the algorithm, and T,pmm = 2 teomm 18 the total communication time
neglecting the effects of computational overlap and resource contention [4]. When v = 1,
the effect of Teomm is completely hidden by computational overlap. Conversely, negative
effects of waiting on resources are expressed by 4 < 0. The parameter v is very highly de-
pendent on both the communication structure of a given algorithm and the communication
support provided by the system.

As a trial application, both sets of communication primitives were used on a common
image processing algorithm, the Sobel edge detector. The parallel Sobel algorithm divides
an image into a grid of equal size subimages which are distributed on the array nodes (the
assignuient technique is described in [4]). A 3 x 3 pixel window operator is convolved with
each of the pixels in the subimage. Tlhis requires that the pixel values for the 8 neighboring

98 MUDGE ET AL.

Ext. Vertex Fraction of total Total execution
speedup over execution time speedup over single
image subimage | Std. Vertex spent calculating node algorithm
size size total comm. | Ext. Vix. Std. Vix. Ext. Vtx. Std. Vix.
(128x 128 32x32 | 102 3.83 0.99 0.97 15.9 15.6
| 64x64 16x16 | 1.08 524 0.98 0.91 16.0 14.8
32 x 32 8x8 | 1.34 0.9 0.96 0.72 13.7 10.2

Table 3: Sobel Edge Detector Experiment (16 processors).

pixels (N, S, E, W, NE, NW, SE, and SW) be available. Thus, when calculating the values
for pixels on the edge of a subimage, the calculating processor must use pixel values from
the edge of the neighboring subimage. A similar requirement exists for the corners. The
possibility for contputation /communication overlap exists since the interior of the subimage
may be processed while awaiting reception of the data needed for the border calculations.
Also, the potential for a large number of messages to be active in the system simultaneously
leads to some resource contention.

The value of 1 is given for both standard Vertex and extended Vertex. The results of
the Sobel edge detector experiment are given in Table 3. The advantages of prescheduling
resources and extracting ns much computation/communications overlap as possible are ev-
idenced by the large speedups achieved with the extended Vertex primitives. For a small
subimage size the total program execntion speedup was 1.34. As expected, the improvement
increases as the conumunications account for a larger portion of total processing effort.

6 Conclusion

The results that we have produced so far have been encouraging. As shown in Table 3, the
use of extended Vertex communication primitives allows the array processors to spend a
much higher fraction of their total program execution time calculating results, rather than
communicating or waiting for resources. To date, these results have been achieved only for
algorithins where the communication mode is nearest neighbor. Work is presently underway
to achieve the same type of results for algorithms where the primary communication mode
is broadcast or random access.

References

(1] John P. Hayes, Trevor N. Mudge, Quentin F. Stout, Steve Colley, and John Palmer. A
microprocessor-based hypercube supercomputer. IEEE MICRO, :6-17, October 1986.

(2] Joseph E. Brandenburg and David S. Scott, Embeddings of Communication Trees and
Grids into Hypercubes. Technical Report 1, Intel Scientific Computers, 15201 N. W,
Greenbrier Parkway, Beaverton, OR 97006, 1986.

HIGH PERFORMANCE OPERATING SYSTEM FOR THE NCUBE 99

[3] Geoffrey C. Fox and A. Kolawa. Implementation of the high performance crystalline
operating system on Intel iPSC hypercube. In Michael T. Heath, editor, Hypercube
Multiprocessors 1986, pages 269-271, SIAM, Society for Industrial and Applied Mathe-

matics, 1400 Architects Bldg., 117 South 17th Street, Philadelphia, PA 19103, August
1985,

[4] Trevor N. Mudge and Tarek S. Abdel-Rahman. Vision algorithms for hypercube ma-
chines. Journal of Parallel and Distributed Computing, 4(2), March 1987 (to appear)

